latest_ny_times_counties_with_populations (view)
Data license: LICENSE · Data source: The New York Times · About: simonw/covid-19-datasette
67 rows where state = "Alabama" sorted by cases_per_million descending
This data as json, yaml, Notebook, copyable, CSV (advanced)
Suggested facets: date (date)
state 1
- Alabama · 67 ✖
date | county | state | fips | cases | deaths | population | deaths_per_million | cases_per_million ▲ |
---|---|---|---|---|---|---|---|---|
2022-05-13 | Hale | Alabama | 1065 | 4741 | 106 | 14651 | 7235 | 323595 |
2022-05-13 | Winston | Alabama | 1133 | 7576 | 131 | 23629 | 5544 | 320622 |
2022-05-13 | Franklin | Alabama | 1059 | 9903 | 139 | 31362 | 4432 | 315764 |
2022-05-13 | Clay | Alabama | 1027 | 4099 | 82 | 13235 | 6195 | 309709 |
2022-05-13 | Fayette | Alabama | 1057 | 4986 | 96 | 16302 | 5888 | 305852 |
2022-05-13 | Clarke | Alabama | 1025 | 7154 | 101 | 23622 | 4275 | 302853 |
2022-05-13 | Morgan | Alabama | 1103 | 36167 | 518 | 119679 | 4328 | 302200 |
2022-05-13 | Colbert | Alabama | 1033 | 16356 | 261 | 55241 | 4724 | 296084 |
2022-05-13 | Walker | Alabama | 1127 | 18767 | 447 | 63521 | 7037 | 295445 |
2022-05-13 | Cullman | Alabama | 1043 | 24649 | 367 | 83768 | 4381 | 294253 |
2022-05-13 | Jackson | Alabama | 1071 | 15049 | 241 | 51626 | 4668 | 291500 |
2022-05-13 | Elmore | Alabama | 1051 | 23420 | 347 | 81209 | 4272 | 288391 |
2022-05-13 | Bibb | Alabama | 1007 | 6457 | 105 | 22394 | 4688 | 288336 |
2022-05-13 | Calhoun | Alabama | 1015 | 32453 | 627 | 113605 | 5519 | 285665 |
2022-05-13 | Autauga | Alabama | 1001 | 15863 | 216 | 55869 | 3866 | 283932 |
2022-05-13 | St. Clair | Alabama | 1115 | 25395 | 416 | 89512 | 4647 | 283704 |
2022-05-13 | Marshall | Alabama | 1095 | 27438 | 394 | 96774 | 4071 | 283526 |
2022-05-13 | Tallapoosa | Alabama | 1123 | 11445 | 234 | 40367 | 5796 | 283523 |
2022-05-13 | Jefferson | Alabama | 1073 | 185930 | 2373 | 658573 | 3603 | 282322 |
2022-05-13 | Shelby | Alabama | 1117 | 61273 | 452 | 217702 | 2076 | 281453 |
2022-05-13 | Etowah | Alabama | 1055 | 28779 | 651 | 102268 | 6365 | 281407 |
2022-05-13 | Talladega | Alabama | 1121 | 22396 | 377 | 79978 | 4713 | 280027 |
2022-05-13 | Coosa | Alabama | 1037 | 2977 | 58 | 10663 | 5439 | 279189 |
2022-05-13 | Wilcox | Alabama | 1131 | 2892 | 46 | 10373 | 4434 | 278800 |
2022-05-13 | Crenshaw | Alabama | 1041 | 3834 | 100 | 13772 | 7261 | 278390 |
2022-05-13 | Marengo | Alabama | 1091 | 5196 | 108 | 18863 | 5725 | 275459 |
2022-05-13 | Escambia | Alabama | 1053 | 10081 | 171 | 36633 | 4667 | 275189 |
2022-05-13 | Marion | Alabama | 1093 | 8157 | 152 | 29709 | 5116 | 274563 |
2022-05-13 | Mobile | Alabama | 1097 | 113300 | 1653 | 413210 | 4000 | 274194 |
2022-05-13 | Lamar | Alabama | 1075 | 3745 | 65 | 13805 | 4708 | 271278 |
2022-05-13 | Lowndes | Alabama | 1085 | 2628 | 77 | 9726 | 7916 | 270203 |
2022-05-13 | Tuscaloosa | Alabama | 1125 | 56301 | 786 | 209355 | 3754 | 268925 |
2022-05-13 | Henry | Alabama | 1067 | 4584 | 76 | 17205 | 4417 | 266434 |
2022-05-13 | Pickens | Alabama | 1107 | 5271 | 102 | 19930 | 5117 | 264475 |
2022-05-13 | Dale | Alabama | 1045 | 12947 | 231 | 49172 | 4697 | 263300 |
2022-05-13 | DeKalb | Alabama | 1049 | 18799 | 330 | 71513 | 4614 | 262875 |
2022-05-13 | Lauderdale | Alabama | 1077 | 24193 | 397 | 92729 | 4281 | 260900 |
2022-05-13 | Coffee | Alabama | 1031 | 13643 | 231 | 52342 | 4413 | 260651 |
2022-05-13 | Butler | Alabama | 1013 | 5068 | 129 | 19448 | 6633 | 260592 |
2022-05-13 | Blount | Alabama | 1009 | 15005 | 243 | 57826 | 4202 | 259485 |
2022-05-13 | Chambers | Alabama | 1017 | 8508 | 162 | 33254 | 4871 | 255848 |
2022-05-13 | Monroe | Alabama | 1099 | 5276 | 80 | 20733 | 3858 | 254473 |
2022-05-13 | Limestone | Alabama | 1083 | 25065 | 293 | 98915 | 2962 | 253399 |
2022-05-13 | Covington | Alabama | 1039 | 9355 | 232 | 37049 | 6261 | 252503 |
2022-05-13 | Chilton | Alabama | 1021 | 11131 | 207 | 44428 | 4659 | 250540 |
2022-05-13 | Baldwin | Alabama | 1003 | 55862 | 681 | 223234 | 3050 | 250239 |
2022-05-13 | Geneva | Alabama | 1061 | 6494 | 164 | 26271 | 6242 | 247192 |
2022-05-13 | Montgomery | Alabama | 1101 | 55316 | 948 | 226486 | 4185 | 244235 |
2022-05-13 | Houston | Alabama | 1069 | 25800 | 506 | 105882 | 4778 | 243667 |
2022-05-13 | Madison | Alabama | 1089 | 90395 | 968 | 372909 | 2595 | 242404 |
2022-05-13 | Cleburne | Alabama | 1029 | 3566 | 69 | 14910 | 4627 | 239168 |
2022-05-13 | Conecuh | Alabama | 1035 | 2869 | 70 | 12067 | 5800 | 237755 |
2022-05-13 | Perry | Alabama | 1105 | 2096 | 47 | 8923 | 5267 | 234898 |
2022-05-13 | Lawrence | Alabama | 1079 | 7682 | 160 | 32924 | 4859 | 233325 |
2022-05-13 | Greene | Alabama | 1063 | 1877 | 49 | 8111 | 6041 | 231414 |
2022-05-13 | Lee | Alabama | 1081 | 37888 | 341 | 164542 | 2072 | 230263 |
2022-05-13 | Barbour | Alabama | 1005 | 5681 | 98 | 24686 | 3969 | 230130 |
2022-05-13 | Bullock | Alabama | 1011 | 2319 | 54 | 10101 | 5346 | 229581 |
2022-05-13 | Pike | Alabama | 1109 | 7590 | 134 | 33114 | 4046 | 229208 |
2022-05-13 | Washington | Alabama | 1129 | 3736 | 59 | 16326 | 3613 | 228837 |
2022-05-13 | Dallas | Alabama | 1047 | 8429 | 244 | 37196 | 6559 | 226610 |
2022-05-13 | Randolph | Alabama | 1111 | 5085 | 75 | 22722 | 3300 | 223791 |
2022-05-13 | Macon | Alabama | 1087 | 3885 | 85 | 18068 | 4704 | 215021 |
2022-05-13 | Sumter | Alabama | 1119 | 2594 | 51 | 12427 | 4103 | 208739 |
2022-05-13 | Cherokee | Alabama | 1019 | 5131 | 86 | 26196 | 3282 | 195869 |
2022-05-13 | Russell | Alabama | 1113 | 10112 | 93 | 57961 | 1604 | 174462 |
2022-05-13 | Choctaw | Alabama | 1023 | 2051 | 36 | 12589 | 2859 | 162920 |
Advanced export
JSON shape: default, array, newline-delimited
CREATE VIEW latest_ny_times_counties_with_populations AS select ny_times_us_counties.date, ny_times_us_counties.county, ny_times_us_counties.state, ny_times_us_counties.fips, ny_times_us_counties.cases, ny_times_us_counties.deaths, us_census_county_populations_2019.population, 1000000 * ny_times_us_counties.deaths / us_census_county_populations_2019.population as deaths_per_million, 1000000 * ny_times_us_counties.cases / us_census_county_populations_2019.population as cases_per_million from ny_times_us_counties join us_census_county_populations_2019 on ny_times_us_counties.fips = us_census_county_populations_2019.fips where "date" = ( select max(date) from ny_times_us_counties ) order by deaths_per_million desc;