latest_ny_times_counties_with_populations (view)
Data license: LICENSE · Data source: The New York Times · About: simonw/covid-19-datasette
53 rows where state = "North Dakota" sorted by cases_per_million descending
This data as json, yaml, Notebook, copyable, CSV (advanced)
Suggested facets: date (date)
state 1
- North Dakota · 53 ✖
date | county | state | fips | cases | deaths | population | deaths_per_million | cases_per_million ▲ |
---|---|---|---|---|---|---|---|---|
2022-05-13 | Rolette | North Dakota | 38079 | 6121 | 43 | 14176 | 3033 | 431786 |
2022-05-13 | Stark | North Dakota | 38089 | 11683 | 86 | 31489 | 2731 | 371018 |
2022-05-13 | Burleigh | North Dakota | 38015 | 35087 | 303 | 95626 | 3168 | 366919 |
2022-05-13 | Morton | North Dakota | 38059 | 11274 | 142 | 31364 | 4527 | 359456 |
2022-05-13 | Stutsman | North Dakota | 38093 | 7113 | 97 | 20704 | 4685 | 343556 |
2022-05-13 | Eddy | North Dakota | 38027 | 761 | 6 | 2287 | 2623 | 332750 |
2022-05-13 | Hettinger | North Dakota | 38041 | 828 | 8 | 2499 | 3201 | 331332 |
2022-05-13 | Cass | North Dakota | 38017 | 59940 | 333 | 181923 | 1830 | 329480 |
2022-05-13 | Grand Forks | North Dakota | 38035 | 22468 | 125 | 69451 | 1799 | 323508 |
2022-05-13 | Sioux | North Dakota | 38085 | 1350 | 19 | 4230 | 4491 | 319148 |
2022-05-13 | Walsh | North Dakota | 38099 | 3374 | 34 | 10641 | 3195 | 317075 |
2022-05-13 | Ramsey | North Dakota | 38071 | 3638 | 57 | 11519 | 4948 | 315826 |
2022-05-13 | Mercer | North Dakota | 38057 | 2577 | 24 | 8187 | 2931 | 314767 |
2022-05-13 | Foster | North Dakota | 38031 | 992 | 23 | 3210 | 7165 | 309034 |
2022-05-13 | Ward | North Dakota | 38101 | 20887 | 251 | 67641 | 3710 | 308792 |
2022-05-13 | Mountrail | North Dakota | 38061 | 3254 | 37 | 10545 | 3508 | 308582 |
2022-05-13 | Dickey | North Dakota | 38021 | 1496 | 39 | 4872 | 8004 | 307060 |
2022-05-13 | Pembina | North Dakota | 38067 | 1996 | 16 | 6801 | 2352 | 293486 |
2022-05-13 | Towner | North Dakota | 38095 | 641 | 12 | 2189 | 5481 | 292827 |
2022-05-13 | Barnes | North Dakota | 38003 | 3024 | 47 | 10415 | 4512 | 290350 |
2022-05-13 | Ransom | North Dakota | 38073 | 1515 | 28 | 5218 | 5366 | 290341 |
2022-05-13 | Benson | North Dakota | 38005 | 1980 | 23 | 6832 | 3366 | 289812 |
2022-05-13 | McLean | North Dakota | 38055 | 2737 | 49 | 9450 | 5185 | 289629 |
2022-05-13 | Williams | North Dakota | 38105 | 10496 | 68 | 37589 | 1809 | 279230 |
2022-05-13 | McIntosh | North Dakota | 38051 | 688 | 9 | 2497 | 3604 | 275530 |
2022-05-13 | Traill | North Dakota | 38097 | 2205 | 26 | 8036 | 3235 | 274390 |
2022-05-13 | Bowman | North Dakota | 38011 | 828 | 9 | 3024 | 2976 | 273809 |
2022-05-13 | Golden Valley | North Dakota | 38033 | 476 | 4 | 1761 | 2271 | 270300 |
2022-05-13 | Adams | North Dakota | 38001 | 598 | 10 | 2216 | 4512 | 269855 |
2022-05-13 | Pierce | North Dakota | 38069 | 1065 | 32 | 3975 | 8050 | 267924 |
2022-05-13 | Nelson | North Dakota | 38063 | 768 | 18 | 2879 | 6252 | 266759 |
2022-05-13 | Wells | North Dakota | 38103 | 1018 | 12 | 3834 | 3129 | 265519 |
2022-05-13 | Sargent | North Dakota | 38081 | 1031 | 9 | 3898 | 2308 | 264494 |
2022-05-13 | Griggs | North Dakota | 38039 | 583 | 2 | 2231 | 896 | 261317 |
2022-05-13 | Bottineau | North Dakota | 38009 | 1598 | 26 | 6282 | 4138 | 254377 |
2022-05-13 | Richland | North Dakota | 38077 | 4108 | 23 | 16177 | 1421 | 253940 |
2022-05-13 | LaMoure | North Dakota | 38045 | 1015 | 20 | 4046 | 4943 | 250865 |
2022-05-13 | Renville | North Dakota | 38075 | 556 | 15 | 2327 | 6446 | 238934 |
2022-05-13 | Dunn | North Dakota | 38025 | 1041 | 8 | 4424 | 1808 | 235307 |
2022-05-13 | Logan | North Dakota | 38047 | 435 | 12 | 1850 | 6486 | 235135 |
2022-05-13 | McHenry | North Dakota | 38049 | 1318 | 31 | 5745 | 5395 | 229416 |
2022-05-13 | Sheridan | North Dakota | 38083 | 299 | 7 | 1315 | 5323 | 227376 |
2022-05-13 | Emmons | North Dakota | 38029 | 728 | 18 | 3241 | 5553 | 224622 |
2022-05-13 | Cavalier | North Dakota | 38019 | 822 | 7 | 3762 | 1860 | 218500 |
2022-05-13 | McKenzie | North Dakota | 38053 | 3272 | 25 | 15024 | 1664 | 217784 |
2022-05-13 | Kidder | North Dakota | 38043 | 510 | 13 | 2480 | 5241 | 205645 |
2022-05-13 | Steele | North Dakota | 38091 | 388 | 2 | 1890 | 1058 | 205291 |
2022-05-13 | Burke | North Dakota | 38013 | 433 | 3 | 2115 | 1418 | 204728 |
2022-05-13 | Divide | North Dakota | 38023 | 459 | 4 | 2264 | 1766 | 202738 |
2022-05-13 | Grant | North Dakota | 38037 | 451 | 11 | 2274 | 4837 | 198328 |
2022-05-13 | Oliver | North Dakota | 38065 | 329 | 5 | 1959 | 2552 | 167942 |
2022-05-13 | Billings | North Dakota | 38007 | 145 | 1 | 928 | 1077 | 156250 |
2022-05-13 | Slope | North Dakota | 38087 | 63 | 0 | 750 | 0 | 84000 |
Advanced export
JSON shape: default, array, newline-delimited
CREATE VIEW latest_ny_times_counties_with_populations AS select ny_times_us_counties.date, ny_times_us_counties.county, ny_times_us_counties.state, ny_times_us_counties.fips, ny_times_us_counties.cases, ny_times_us_counties.deaths, us_census_county_populations_2019.population, 1000000 * ny_times_us_counties.deaths / us_census_county_populations_2019.population as deaths_per_million, 1000000 * ny_times_us_counties.cases / us_census_county_populations_2019.population as cases_per_million from ny_times_us_counties join us_census_county_populations_2019 on ny_times_us_counties.fips = us_census_county_populations_2019.fips where "date" = ( select max(date) from ny_times_us_counties ) order by deaths_per_million desc;