latest_ny_times_counties_with_populations (view)
Data license: LICENSE · Data source: The New York Times · About: simonw/covid-19-datasette
65 rows where state = "South Dakota" sorted by cases_per_million descending
This data as json, yaml, Notebook, copyable, CSV (advanced)
Suggested facets: date (date)
state 1
- South Dakota · 65 ✖
date | county | state | fips | cases | deaths | population | deaths_per_million | cases_per_million ▲ |
---|---|---|---|---|---|---|---|---|
2022-05-13 | Dewey | South Dakota | 46041 | 3139 | 44 | 5892 | 7467 | 532756 |
2022-05-13 | Bon Homme | South Dakota | 46009 | 2292 | 39 | 6901 | 5651 | 332125 |
2022-05-13 | Potter | South Dakota | 46107 | 703 | 7 | 2153 | 3251 | 326521 |
2022-05-13 | Lyman | South Dakota | 46085 | 1205 | 12 | 3781 | 3173 | 318698 |
2022-05-13 | Charles Mix | South Dakota | 46023 | 2942 | 35 | 9292 | 3766 | 316616 |
2022-05-13 | Buffalo | South Dakota | 46017 | 620 | 18 | 1962 | 9174 | 316004 |
2022-05-13 | Codington | South Dakota | 46029 | 8474 | 101 | 28009 | 3605 | 302545 |
2022-05-13 | Davison | South Dakota | 46035 | 5907 | 80 | 19775 | 4045 | 298710 |
2022-05-13 | Minnehaha | South Dakota | 46099 | 57428 | 519 | 193134 | 2687 | 297347 |
2022-05-13 | Aurora | South Dakota | 46003 | 805 | 17 | 2751 | 6179 | 292620 |
2022-05-13 | Todd | South Dakota | 46121 | 2975 | 53 | 10177 | 5207 | 292325 |
2022-05-13 | Grant | South Dakota | 46051 | 2047 | 51 | 7052 | 7231 | 290272 |
2022-05-13 | Pennington | South Dakota | 46103 | 32903 | 342 | 113775 | 3005 | 289193 |
2022-05-13 | Kingsbury | South Dakota | 46077 | 1340 | 22 | 4939 | 4454 | 271309 |
2022-05-13 | Fall River | South Dakota | 46047 | 1807 | 39 | 6713 | 5809 | 269179 |
2022-05-13 | Brule | South Dakota | 46015 | 1415 | 20 | 5297 | 3775 | 267132 |
2022-05-13 | Brown | South Dakota | 46013 | 10344 | 121 | 38839 | 3115 | 266330 |
2022-05-13 | Butte | South Dakota | 46019 | 2757 | 45 | 10429 | 4314 | 264358 |
2022-05-13 | Corson | South Dakota | 46031 | 1070 | 17 | 4086 | 4160 | 261869 |
2022-05-13 | Yankton | South Dakota | 46135 | 5929 | 59 | 22814 | 2586 | 259884 |
2022-05-13 | Mellette | South Dakota | 46095 | 527 | 8 | 2061 | 3881 | 255701 |
2022-05-13 | Lawrence | South Dakota | 46081 | 6605 | 83 | 25844 | 3211 | 255571 |
2022-05-13 | Lincoln | South Dakota | 46083 | 15590 | 102 | 61128 | 1668 | 255038 |
2022-05-13 | Gregory | South Dakota | 46053 | 1065 | 34 | 4185 | 8124 | 254480 |
2022-05-13 | Tripp | South Dakota | 46123 | 1382 | 24 | 5441 | 4410 | 253997 |
2022-05-13 | Union | South Dakota | 46127 | 4026 | 52 | 15932 | 3263 | 252698 |
2022-05-13 | Beadle | South Dakota | 46005 | 4596 | 60 | 18453 | 3251 | 249065 |
2022-05-13 | Faulk | South Dakota | 46049 | 572 | 16 | 2299 | 6959 | 248803 |
2022-05-13 | Meade | South Dakota | 46093 | 7042 | 64 | 28332 | 2258 | 248552 |
2022-05-13 | Clay | South Dakota | 46027 | 3493 | 21 | 14070 | 1492 | 248258 |
2022-05-13 | Edmunds | South Dakota | 46045 | 949 | 16 | 3829 | 4178 | 247845 |
2022-05-13 | Hughes | South Dakota | 46065 | 4335 | 58 | 17526 | 3309 | 247346 |
2022-05-13 | Sanborn | South Dakota | 46111 | 575 | 6 | 2344 | 2559 | 245307 |
2022-05-13 | Hamlin | South Dakota | 46057 | 1508 | 41 | 6164 | 6651 | 244646 |
2022-05-13 | Walworth | South Dakota | 46129 | 1315 | 26 | 5435 | 4783 | 241950 |
2022-05-13 | McCook | South Dakota | 46087 | 1348 | 31 | 5586 | 5549 | 241317 |
2022-05-13 | Ziebach | South Dakota | 46137 | 664 | 11 | 2756 | 3991 | 240928 |
2022-05-13 | Deuel | South Dakota | 46039 | 1043 | 12 | 4351 | 2757 | 239715 |
2022-05-13 | Day | South Dakota | 46037 | 1295 | 35 | 5424 | 6452 | 238753 |
2022-05-13 | Perkins | South Dakota | 46105 | 684 | 18 | 2865 | 6282 | 238743 |
2022-05-13 | Haakon | South Dakota | 46055 | 452 | 12 | 1899 | 6319 | 238020 |
2022-05-13 | Hutchinson | South Dakota | 46067 | 1733 | 36 | 7291 | 4937 | 237690 |
2022-05-13 | Hyde | South Dakota | 46069 | 307 | 8 | 1301 | 6149 | 235972 |
2022-05-13 | Turner | South Dakota | 46125 | 1969 | 62 | 8384 | 7395 | 234852 |
2022-05-13 | Bennett | South Dakota | 46007 | 789 | 14 | 3365 | 4160 | 234472 |
2022-05-13 | Roberts | South Dakota | 46109 | 2436 | 53 | 10394 | 5099 | 234365 |
2022-05-13 | Douglas | South Dakota | 46043 | 684 | 16 | 2921 | 5477 | 234166 |
2022-05-13 | Brookings | South Dakota | 46011 | 8149 | 52 | 35077 | 1482 | 232317 |
2022-05-13 | Custer | South Dakota | 46033 | 2034 | 26 | 8972 | 2897 | 226705 |
2022-05-13 | Spink | South Dakota | 46115 | 1418 | 36 | 6376 | 5646 | 222396 |
2022-05-13 | Clark | South Dakota | 46025 | 804 | 9 | 3736 | 2408 | 215203 |
2022-05-13 | Moody | South Dakota | 46101 | 1386 | 28 | 6576 | 4257 | 210766 |
2022-05-13 | Miner | South Dakota | 46097 | 457 | 13 | 2216 | 5866 | 206227 |
2022-05-13 | Jerauld | South Dakota | 46073 | 415 | 20 | 2013 | 9935 | 206159 |
2022-05-13 | Stanley | South Dakota | 46117 | 637 | 7 | 3098 | 2259 | 205616 |
2022-05-13 | Jones | South Dakota | 46075 | 177 | 2 | 903 | 2214 | 196013 |
2022-05-13 | Campbell | South Dakota | 46021 | 268 | 7 | 1376 | 5087 | 194767 |
2022-05-13 | Hanson | South Dakota | 46061 | 655 | 6 | 3453 | 1737 | 189690 |
2022-05-13 | Jackson | South Dakota | 46071 | 632 | 21 | 3344 | 6279 | 188995 |
2022-05-13 | Lake | South Dakota | 46079 | 2335 | 28 | 12797 | 2188 | 182464 |
2022-05-13 | McPherson | South Dakota | 46089 | 426 | 9 | 2379 | 3783 | 179066 |
2022-05-13 | Sully | South Dakota | 46119 | 245 | 3 | 1391 | 2156 | 176132 |
2022-05-13 | Hand | South Dakota | 46059 | 562 | 12 | 3191 | 3760 | 176120 |
2022-05-13 | Marshall | South Dakota | 46091 | 796 | 13 | 4935 | 2634 | 161296 |
2022-05-13 | Harding | South Dakota | 46063 | 201 | 3 | 1298 | 2311 | 154853 |
Advanced export
JSON shape: default, array, newline-delimited
CREATE VIEW latest_ny_times_counties_with_populations AS select ny_times_us_counties.date, ny_times_us_counties.county, ny_times_us_counties.state, ny_times_us_counties.fips, ny_times_us_counties.cases, ny_times_us_counties.deaths, us_census_county_populations_2019.population, 1000000 * ny_times_us_counties.deaths / us_census_county_populations_2019.population as deaths_per_million, 1000000 * ny_times_us_counties.cases / us_census_county_populations_2019.population as cases_per_million from ny_times_us_counties join us_census_county_populations_2019 on ny_times_us_counties.fips = us_census_county_populations_2019.fips where "date" = ( select max(date) from ny_times_us_counties ) order by deaths_per_million desc;